

Transforming Dynamic Behavior Specifications from Activity Diagrams to BPEL

Nasser Mousa Faleh . Mustafa
SEECS, University of Ottawa

Ottrawa, Canada
Nmust041@uottawa.ca

Gregor V. Bochmann
SEECS,University of Ottawa

Ottawa, Canada
bochmann@site.uottawa.ca

Abstract - The Service-Oriented Architecture (SOA)
provided by the Web Services standards supports Model-
Driven Development, it allows global business process models
described in the Business Process Modeling Notation (BPMN)
or as UML Activity Diagrams to be transformed into Web
Services components specified by WSDL and/or BPEL. We
have experimented the transformation of UML Activity
Diagrams to several BPEL processes using the IBM Rational
Software Architect (RSA) tool. These diagrams were derived
from the specification of global system behavior where each
activity may represent some collaboration between several
system components in distributed systems. The derived
component behaviors assure that the global behavior will be
realized by coordinating the actions of the components
through the exchange of asynchronous messages. In this
paper, we describe how this method can be adapted to the
context where the system components will be implemented as
BPEL processes. We found out that the IBM Rational tool
does not support some important asynchronous message
exchange scenarios, and we describe here how the generated
BPEL processes can be manually adapted. We also discuss
some difficulties that arise in relation with input message
buffering. since we assume that the received messages remain
in a buffer pool until they are required by the destination
process. This message buffering is largely provided by the
BPEL execution environment. We explain in this paper how
all these problems can be resolved by simple modifications of
the automatically generated component behaviors in BPEL.

Keywords: Distributed applications, Web Services,
Service Oriented Architecture, BPEL, UML, Activity
diagrams, transformations, race conditions.

I. INTRODUCTION

The increasing demands for more software applications
and their complexity have urged researchers in software
engineering to think about new tools to simplify the job of
software engineers. The standardized Unified Modeling
Language (UML) [1] has attracted much attention. UML
provides the possibility to define different types of
diagrams, generate automatic documentation, and allow
software developers to communicate with a high level of
abstraction. In addition, UML models can be imported,
exported and transformed into other business models
through automatic transformations. These models play an
important role in Model Driven Architecture (MDA) [2],
specifically for the transformation from UML to the
Service Oriented Architecture (SOA) [3], including the
Business Process Execution Language (BPEL) [4]. There
has been a considerable amount of work on the
transformation from UML or the Business Process
Modeling Notation (BPMN) to BPEL. Most of this
previous work considers that the generated BPEL process
communicates with other Web Services (WS) through
synchronous method invocations

for the performance of certain actions. In contrast, we
consider in this paper the situation where several BPEL
processes running in different servers collaborate by
asynchronous message passing. This situation occurs
naturally in the context of distributed workflow
implementations. The examples considered in this paper
arise in the context of a development process of distributed
applications where the requirements are first defined at a
high level of abstraction in terms of an Activity diagram
where each activity is either a collaboration between
several parties, or an action that is performed by one of
these parties. Our work extends a previous work that was
developed by [15,16] for specifying such high-level
collaborations, in addition to formulating an algorithm for
deriving the specification of the dynamic behavior of each
of the involved parties in terms of local actions and the
exchange of coordination messages that coordinate the
actions of the different parties involved. Moreover, the
author of [17] used the Eclipse tool to implement this
algorithm and produce the local behavior of each party in
the form of a local Activity diagram. For the
implementation of these local behaviors in the framework
of Web Services, we are therefore interested in
transforming the diagrams defining the local behaviors into
BPEL processes that are executed on different server
computers.

In this paper we describe our experimentation with the
transformation of UML-2 Activity diagrams into PBEL
processes with asynchronous message passing, using
examples coming from the derivation of local behaviors as
explained above. In this context, it is important to avoid
race conditions between different message reception and
sending events. This can be achieved by introducing a local
input message pool where received messages are stored
until they are requested (consumed) by the application
process (that is, the BPEL process). This distinction
between reception and consumption of messages is
important for the correct operation of the distributed
system. The Web Services execution environment that we
used for our experiments supported this distinction,
however, not to the full degree required. In fact, the
application may indicate which type of message it wants to
consume, but it cannot indicate which particular message
parameter value it is waiting for. Because of this missing
feature, we had to introduce additional complications in the
translation process in the case that the behavior includes
certain types of loops. We also noted that the translation
tool we used for our experiments did not correctly deal with
the choice between two different types of messages that
could be received at a given point during the execution of
the behavior.

This paper is structured in three sections. Section II
introduces a background on the UML to SOA
transformation and an example of an application with
asynchronous messages exchanges. Section III discusses
the limitations of the UML to BPEL transformations and
proposes solution for these limitations. We conclude the
paper with conclusions and future work in Section IV.

II. BACKGROUND

A. Transformation from UML to Service
Oriented Architecture (SOA)

The Service-Oriented Architecture (SOA) provides
design principles for loosely integrating services that could
be provided by different business domains. Using the Web
Services (WS) standards of the WSDL service descriptions
and the SOAP communication protocol, these services
could either be newly created processes or encapsulations
of legacy software systems that are made available over
the Internet. Several services may be integrated using a
central control process, a design principle called
orchestration. Often this control process is described using
the Business Process Execution Language (BPEL).

The Web Services standards provide two kinds of
communication between different processes: (a)
synchronous and (b) asynchronous. For synchronous
communication, which is a kind of remote procedure call,
one normally distinguishes a Client process and a Server
process. A synchronous communication consists of two
message exchanges: First the Client sends a message
requesting the execution of a specific method with
specified parameters. Then at the end of this execution, the
Server returns a message containing the result information
to the Client. The Client, in the meantime, waits for this
answer. In the case of asynchronous communication, any
process may, at any time, send a message to another
process, and normally continues some local processing.
Each reception of a message normally leads to some local
processing which may include the transmission of new
messages to other processes. The orchestration design
principle normally uses synchronous communication;
another design principle called choreography favors
asynchronous communication. An example of
asynchronous communication is a Client that sends a
change of billing address to the service.

BPEL is a kind of programming language, encoded in
XML. It is intended for defining programs that coordinate

the execution of Web Services that are provided on
different servers, possibly by different organizations. The
control flow constructs of the language include sequential
execution, alternatives, loops and concurrency, besides the
basic operations of updating local variables and calling
methods provided by local or remote services. Since these
control structures are quite similar to those of UML
Activity diagrams and the Business Process Modeling
Notation (BPMN), there has been much work on the
automatic translation from UML Activity diagrams into
BPEL processes. A WS-BPEL meta-model and process
interaction meta-model have been defined [5] for
generating BPEL processes from UML-2 system models.
The author of [6] proposes a model-driven approach for
extending UML-2 Activity diagrams (AD) with business
process goals and performance measures and describes a
mapping into BPEL. A UML-2 extension for SOA –
called the UML4SOA profile for modeling service
orchestrations was introduced by [7], including the
transformation from UML4SOA Activity diagrams into
executable languages such as BPEL and Java. Others
defined a transformation method from the Business
Process Modeling Notation (BPMN) into BPEL [8].

B. Distributed System Design from Global

Service Specifications

As mentioned in the introduction, the work performed
by [15] specified graphical notation based on UML
Activity diagrams for distributed applications at a high-
level of abstraction called “choreography”. Each activity
within the diagram is either a collaboration between
several parties involved in the distributed application, or a
local action by one of these parties. These collaborations
may be further refined in terms of sub-collaboration
diagrams, in the form of “choreographies” or simply by a
sequence diagram showing the local actions and messages
exchanged between the parties. An example is shown in
Figure 1 below.

 (a) (b)

Figure 1: Client-Simulator-Storage - (a) High-level view, (b) Sequence diagram

The high-level view of this example application (see
Figure 1(a)) includes the initiate, simulation and detail
collaborations. The initiate collaboration is started by the
Client to initiate the Storage. Figure 1(b) shows the
repeated execution of the simulation collaboration
followed by the details collaboration. We now assume
that this application involves three parties: the Client, the
Simulator, and the Storage. The role of the Storage party
is to store the detailed data of each simulation, and
provide the details of the last simulation when requested
by the Client during the details collaboration (which only
involves the Client and the Storage). We further assume
that (a) the simulation collaboration is initiated by the
Client by sending a SimReq message to the Simulator, and
is concluded by the Simulator sending the detailed results
of the simulation to the Storage and a summary of the
results to the Client, and (b) that the details collaboration
is a simple remote call by the Client of the method
GetDetails provided by the Storage. Under these
assumptions, this Client-Simulator-Storage example will
give rise to execution scenarios described by the sequence
diagram of Figure 1(b). We note that in such distributed
applications one has to distinguish between strong and
weak sequencing. The loop in this example is a weak
loop, which means that the Client may start the next
repetition of the loop before the Storage has received the
data message. In applications with weak sequencing, there
are often situations of race conditions between the
reception of messages from different parties or race
conditions between sending and receiving messages. A
systematic review of these difficulties is given in [11] and
[15]. This is a very simple example. Note, however, that
the decision about the termination of the loop will be
performed by the Client (who chooses between the
messages SimReq and GetDetails). If the loop should be
executed 4 times, as indicated in Figure 1(b), then the
Client should have a local counter variable that is
incremented during each execution of the loop. We also
note that a race condition may occur at the Storage party
in the case that the last data message encounters a long
transmission delay from the Simulator, and the
subsequently sent GetDetails message from the Client
arrives earlier. If this race condition is not detected, the
Storage party will return the detailed results of the before-
last simulation, which is an error. We will discuss below
how such race conditions can be dealt with.

C. Implementing distributed system designs as

Web Services using BPEL

For the work described in this paper, our objective was
to evaluate the possibility of a semi-automatic process for
the implementation of distributed applications as Web
Services, We starts with the work of [16,17] that describes
the high-level of the overall system behavior. Given that
their Eclipse software tool provides for the automatic
transformation from the high-level global collaboration
diagram to local UML Activity diagrams for each of the
involved parties, and that the IBM RSA tool provides for
the automatic translation from UML Activity diagrams to
corresponding BPEL processes, it was natural to combine
these two transformation processes into a single
automated implementation process starting with the global
high-level system behavior description and the
identification of the parties involved and ending with a
BPEL process for each party running in the IBM
WebSphere environment.The following section describes

the results of our experiments, explains some difficulties
encounters and provides some solutions.

III. UML TO BPEL TRANSLATION: REALIZATION AND
LIMITATIONS

 We describe in this section the results of our
experimentation with the IBM RSA tool in view of
automatically transforming a UML Activity diagram
representing a given party behavior into a BPEL process
that is executed within the IBM WebSphere environment.
Most of the difficulties encountered are related to the
reception of asynchronous messages and their
consumption from the local message pool.

A. Message consumption from the message pool

Our experiments confirmed that the WebSphere
environment implementation has a message reception pool
for each BPEL process from which messages can be
consumed in the order in which the BPEL process
requests them. In the case of a request of a specific
message type, the message is consumed by a Receive
primitive. In the case that the BPEL process is ready to
consume a message among several different message
types, the BPEL Pick primitive can be used. However, we
have not found any way to specify that a message of a
given type with a given parameter value should be
consumed from the message pool. Also alternatives
between sets of several concurrent message consumptions
cannot be realized by BPEL processes. How these
difficulties can be accommodated is described in the
following subsections.

B. Alternative message receptions

In UML activity diagrams, a choice may have different
semantics: (a) the choice may depend on some local
condition (e.g. a Boolean variable with value true or
false), or (b) in the case of the choice between two
message receptions, the choice will depend on which
message is first received (or in the presence of a message
pool, which message is available for consumption). We
consider as an example the send activities in Figure 2: The
Client party sends either message A or message B to the
Service party. The behavior of the latter is shown in
Figure 3: the Service can receive either message. We note
that the Client makes a decision based on the value of the
condition variable, while the Service has no decision to be
made; it receives either A or B, but never both. The
transformation function of the RSA tool did not
distinguish these two types of decision nodes. Both
decision nodes, of the Client and of the Service, were
transformed into a BPEL decision node. This is correct for
the Client, but not for the Service. A decision node
between several alternative message receptions should
rather be translated into a BPEL Pick primitive. We have
approached this failure of the automatic transformation
function by manually changing the resulting decision node
in the BPEL Service process into a Pick node. The
alternative message reception events are represented in the
BPEL process using <onMessage> elements. The Pick
executes the alternative that starts with the reception of
the events that occurs first. Figure 4 shows the
automatically obtained BPEL process for the Client party,
while Figure 5 shows the BPEL process for the Service
party after the manual transformation.

Figure 2: Activity diagram - Client behavior.

Figure 3: Activity diagram - Service behavior

.

Figure 4: BPEL process of Client party with decision node. Figure 5: BPEL process of Service party with alternative
 messages reception

C. Alternative with concurrent message
reception

The situation concerning alternative actions
becomes more complicated if one alternative involves
the concurrent reception of several messages, as
illustrated by the Service party shown in Figure 6. The
second alternative includes the reception of the two
messages B and C with respective actions y and z
subsequently. In the Activity diagram, each receive
activity is modeled as an accept call action node which
is assigned to a call event trigger that specifies the type
of message to receive. This behavior cannot be translated
into a BPEL process with a Pick node involving the three
message types, since the Pick node receives only one
message, never two. We propose in the following
subsections two different solutions to this problem: (a)
converting the concurrency into alternatives, and (b)
adding an extra message before the concurrent messages.

1. Converting the concurrency to alternatives
It is well-known that concurrency can be

implemented by interleaving. As shown in Figure 7, the

two concurrent receptions can be modeled by two
alternatives, one first receiving B, the other first
receiving C. In the case that B is received first, the action
y following this reception is executed concurrently with
the reception of C and its following action z. This
Activity diagram can be translated into BPEL using the
method described in Section III part B. The three
alternatives of Figure 7 are selected by a Pick node
which is manually inserted.

2. Adding an additional message before the
concurrent receives

An alternative solution is to add an additional
message transmission when the concurrent alternative is
chosen. This leads to the “equivalent” Activity diagram
of Figure 8, which involves an additional message
transmission, but has a simple overall structure. In case
of receiving the extra message, the reception of the
messages B and C will be performed concurrently. The
transformation into BPEL can be performed as described
in Section III part B.

Figure 6: Activity diagram showing the choice between a single and a concurrent message reception

Figure 7: Transformed Activity diagram equivalent to the diagram of Figure 6

D. Race conditions and weak loops

As mentioned in Section II part B, race conditions can
be handled by introducing a message reception pool at
each party and letting the destination process determine
when it is ready to consume any received message, instead
of requiring a message to be processed when it is received.
For this purpose, it is necessary that the destination process
can request the consumption of a given type of message, or
one out of several alternative messages, as discussed in the
previous subsections. It is therefore necessary that the
different messages that may be received by the destination
process during different stages of its processing belong to
different message types. However, there are situations
where the distinction between different message types is
not sufficient, but the distinction of which message to

consume depends also on the values of certain message
parameters. This is the case in the example introduced in
Section II part B which is considered here again. The
issues concerning races that may occur in the coordination
of collaborations between several distributed parties,
especially in the presence of weak sequencing, are
discussed in detail in [11] and [15]. The example of
Section II part B (see Figure 1) contains a weak loop and
the possibility of a race between the reception of the last
data message by the Storage party and its reception of the
GetDetails message. It has been proposed that such races
can be handled by including in all messages involved a
sequence number which indicates how many times the
loop has been executed. Each party involved updates a

 Figure 8: Activity diagram with additional message corresponding to Figure 6.

local counter variable and therefore knows what the value
of the sequence number parameter should be for the next
message to be consumed. Initially, these counter variables
have the value zero. The Client party will increment its
counter before its value is included in the first SimReq
message, and the Simulator party will forward the
received parameter value in the parameters of the message
sent. As a result, the Storage party will initially only
consume a data message with parameter value equal to
one (one higher than its local counter); it will then
increment its counter and wait for the next message. If a
GetDetails message is received, it can only be consumed
if its parameter is one larger than the current counter value
of the Storage party. This is shown in Figure 9, where
Figure 9(a) represents the behavior of the Client party,
while Figure 9(b) represents the behavior of the Storage
part. This procedure is included in the distributed system
designs generated by our tool mentioned in Section II part
B [16, 17]. However, this procedure cannot be translated
into our BPEL environment because the message pool of
the IBM WebSphere environment can distinguish
messages only by their message type, and not by their
parameter values.

Figure 9(a): Behavior of Client

Figure 9(b): Behavior of Storage

We have found a solution to this problem by using a

different behavior pattern for the process that has to
distinguish the parameter values of the messages that
control the execution of a weak loop. Instead of the
behavior pattern shown in Figure 9(b), we propose the
behavior pattern shown in Figure 10(a) which deals with
the example of the Storage party in our Client-Simulator-
Storage example. The party has two local variables, a
counter which contains the parameter value of the last
data message received, and a final variable which
contains the value of the GetDetails message parameter if
this message has been received. Both variables are
initialized to -1. We assume here that messages are
delivered in order between any two communicating
parties. When either a data message or the GetDetails
message has been received, the loop can terminate if the
two variables contain the same value; otherwise some
additional data message is expected.This behavior pattern
can be easily transformed into BPEL as explained in
Section III part B. The BPEL behavior obtained for the
Storage party is shown in Figure 10(b).

 (a)

 (b)

Figure 10: Behavior of Storage party
 (a) Activity diagram; (b) BPEL process

IV. CONCLUSION

We have shown how distributed system
collaborations can be modeled as UML activity diagrams
and be transformed into distributed system designs
involving several parties typically implemented as
separate processes in different components. We have
discussed in detail certain difficulties that arise when one
tries to transform the behavior each these separate
processes into BPEL in order to obtain an implementation
in the context of the Service-Oriented Architecture.
Transformations from UML Activity diagrams into BPEL
processes have been studied by many researchers from
different points of view, such as improving performance,
or using notations other than UML. In this paper we
consider systems communicating by asynchronous
message passing. We have identified certain shortcomings
of existing automatic UMLtoBPEL transformations and
have proposed solutions that assist in the production of
correct transformations. We were able to provide two
types of solutions: (a) automatic solutions by modifying
the original activity diagram in such a way that the
automatic transformation process into BPEL works
correctly, and (b) manual intervention which involves the
change of BPEL processes obtained by the automatic
transformation process.

References
[1] OMG Unified Modeling Language. UML Resources. [Online]

2010. [Cited: 10 26, 2010.] http://www.uml.org/.
[2] OMG Model Driven Architecture. [Online] 2010. [Cited: 10 26,

2010.] http://www.omg.org/mda/.
[3] OMG Service Oriented Architecture. [Online] 2010. [Cited: 10 26,

2010.] http://soa.omg.org/.
[4] OASIS BPEL. 2010. http://www.oasis-open.org/committees

/tc_home.php?wg_abbrev=wsbpel.
[5] Chenting Zhao, Zhenhua Duan, and Man Zhang. A Model-Driven

Approach for Generating Business Processes and Process
Interaction Semantics. 2009, Eigth IEEE/ACIS International
Conference on Computer and Information Science.

[6] Birgit Korherr, and Beate List. Extending the UML 2 Activity
Diagram with Business Process Goals and Performance Measures
andthe Mapping to BPEL. SpringerLink, 2006, Vol. 4231/2006.

[7] Philip Mayer, Andreas Schroeder, Nora Koch. A Model-Driven
Approach to Service Orchestration. 2008, IEEE International
Conference on Services Computing.

[8] Chun Ouyang, Wil M.P. van der Aalst, Marlon Dumas, and Arthur
H.M. ter Hofsteder. Translating BPMN to BPEL. 2006,
International Conference on Web Services, pp. 285-292.

[9] Peter Houston, Microsoft Corporation. Selecting Between
Synchronous and Asynchronous Alternatives. [Online] [Cited: 09
30, 2010.]
http://wiki.daimi.au.dk/pca/_files/selectingbetweensynch.pdf.

[10] Dmitry Gorelik . Transformation to SOA. IBM. [Online] IBM.
[Cited: 09 30, 2010.] http://www.ibm.com/developerworks
/rational/library/08/0115_gorelik.

[11] H. N. Castejon, G. v. Bochmann and R. Braek, Realizability of
Collaboration-based Service Specifications, Proc. Asia-Pacific
Software Engineering Conference (APSEC), Nagoya, Japan, Nov.
2007.

[12] Arjan J. Mooij, Nicolae Goga and Judi Romijn Non-local Choice
and Beyond Intricacies of MSC Choice Nodes. FASE, 2005, pp.
273–288 .

[13] Arjan Mooij, Jiud Romijn, and Wieger Wesselink. Realizability
criteria for compositional MSC. Springer, 2006. Proc. of 11th Intl.
Conf. on Algebraic Methodology and Software Technology. Vol.
vol. 4019.

[14] WebSphere Integration Developer. IBM. [Online] [Cited: 10 29,
2010.] http://www-01.ibm.com/software/integration/wid/.

[15] Humberto Nicolás Castejón, Gregor v. Bochmann, and Rolv Bræk.
On the realizability of collaborative services, Journal of Software
and Systems Modeling, to be published.

[16] G. v. Bochmann, Deriving component designs from global
requirements, Proc. Intern. Workshop on Model Based
Architecting and Construction of Embedded Systems (ACES),
Toulouse, Sept. 2008

[17] F. Laamarti, Derivation of component designs from a global
specification, MSc thesis, University of Ottawa, 2010. See
http://www.site.uottawa.ca/~bochmann/dsrg/PublicDocuments/Mas
tertheses/Laamarti%20-%20Derivation-of-Component-Designs-
from- Global-Specifications.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

